Chalk home page
Docs
SDK
CLI
  1. Backtesting

If you want to skip ahead, you can find the full source code for this tutorial on GitHub.


After you’ve created some features and resolvers, you can use them to generate values for training.

Chalk tracks all the values of the features you compute, and times at which those values were computed.

First, we need to sample some user ids on which to build a dataset.

datascience/notebook.ipynb
from datetime import datetime, timezone, timedelta
from chalk.client import ChalkClient
from src.models import User

client = ChalkClient()

now = datetime.now(tz=timezone.utc)
ds = client.offline_query(
    output=[User.id],
    lower_bound=now - timedelta(hours=12),
    upper_bound=now,
)
datascience/notebook.ipynb
from chalk.client import ChalkClient

client = ChalkClient()
dataset = client.offline_query(
    input={
        User.id: [],
    },
    output=[],
    recompute_features=True,
)


ds = client.offline_query(
    input={
    "fraud_model.id": spine["fraud_model.id"].to_list()
    },
    input_times=spine['__chalk__.CHALK_TS'].to_list(),
    output=[
        "fraud_model.id",
        "fraud_model.card_created_at",
    ],
    recompute_features=True
)